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TABLE V. Matrix elements and strain coefficient of matrix elements which were used to calculate the deformation potentials at L. 

Orthogonali ty 
matrix element 

Tight-binding 
integrals 

cr= -0.332 eV 
,.-=+0.180 eV 
8=-0.027 eV 

RiJ(lncr)/iJR= -S.5b 

RiJ(l07r)/aR= -6.9 
RiJ(lno)/iJR= -8.0 

Pseudopotential 

VIl1=0.29 eV 

iJVm/iJev.= -3.85 eVa 
iJVlII/iJc= -0.93 eVe 

Hybridization 

d 

Zero of d 
bands above 1'1 

e 

• The strain tensor for trigonal distortion is given in Table 1. b R Is the nearest· neighbor distance. • e = AVIV Is the relative change of the Yolu r.., 
d See Text and Figs. 13 and 14. • See Table VII. 

longer distinguish between the energy shift of the 2.1-eV 
edge and the change of the Ep - La'" separation. The nu­
merical value is a(Ep-Ls")/ae= -(1.1±0.1) eV, where 
e=t.V/V denotes the relative change of the volume. 

The X 5 ~ X 4' transition contributes only a small 
fraction of the total E2 at 3.9 eV. It is impossible to get 
reliable values of dE2/d(lLw) appropriate to this fraction 
of E2. We do not attempt to calculate the shear-strain 
deformation potential of this transition; instead, we 
simply show that it will produce a negative lVll - W12 

below the energy of the critical point. The level X/ 
has free-electron character; it does not interact with 
the d bands because of symmetry (Fig. 9). Its eigen­
value is k2 (k= X, in atomic units), neglecting a small 
pseudopotential form faclor. The shear coefficient for 
k perpendicular to z (stress axis, see Table I) is a(lnk2)/ 

ae .. = + 1. The shear coefficient of the X5 level, which 
has tight binding character, will be small compared to 
that of k2• Thus the sign of the change in Xl-X5 is 
given by the change of P. For light polarized parallel 
to z only those transitions of X5 ~ X.' with k per­
pendicular to z contribute according to the selection 
rules (these are strictly valid only for the X point and 
zero spin-orbit splitting, but they will huld approxi­
mately). Thus, the 1111 c.p. shilts to higher energies for 
positive c .. , producing negative values for Wll - TV12 
below 4.0 eV, as observed. 

The FS ~ Ll transition has been found to be re­
sponsible)or the large values of W •• and Wll+2W12 

at 4.3 e V and for the edge in E2 at this energy. Because 
. of the strong localization of this transition the deforma­
tion potentials derived from Wi; will be close to those 
of the transition with k=L. Transitions connected with 
Ml and M2 singularities in J which are not modified 
by the Fermi energy will behave differently, because 
they are only moderately localized, as discussed in the 
Introduction. The deformation potentials of transi­
tions with different k will generally be different. Indeed, 
Brust and Liu31 have shown recently that the defonna­
tion potential of the transition with k of the saddlepoint 
and the energy shilt per strain of the corresponding 
structure in the optical spectrum can differ significantly. 

The background slope of E2 at 4.3 eV due to transi­
tions other than FS ~ Ll cannot be determined 

31 D. Brust and L. Liu, Phys. Rev. 154, 647 (1967). 

rigorously. We use the slope of E2 at 4.05 eV, which i, 
-0.5/ eV (Fig. 12). The similarity of Wll+2W12 and 
IV 44 around 4.3 e V shows that changes of M and J which 
can be large for shear strain only do not contribult: 
significantly to W 4(. Furthermore, IV i; has its maximw'. 
where the slope of E2 is largest and where the contribu 
tion of this transition to the total E2 is still small. I i 
present, changes of J and M would have the largc>l 
effect on IV 44 at the maximum contribution of L 2' --7 1'1 
to E2. Thus neglecting changes of 111 and J is justitied 
here. This also justifies the analysis of the previou, 
sections, where we considered the effect of shear slrain 
on the k degeneracy only. 

Without spin, the L2' ~ Ll selection rules a l C 

],,[ •. ~O, M".=M".=O, where k=L is parallel lu 
z' (z' = stress axis, Table I). With spin, these rules wi!! 
still be approximately valid (I M., 12« 1 M %.1 2). T il t' 
selection rules for k~L will be different from the one, 
given above, even without spin. The strong localization 
of the transitions in It space assures that this devia ti(l!1 
is small. The shear coefficient of the transition will I ; 
calculated neglecting the deviations from the selecliu:, 
rules given above. 

The deformation potentials delermined from c\ 
periment and evaluated using the assumption di­
cllssed above are a(L1- Ep)/ ae= (-9.6±1.5) eV <1 1< 

a(L1-Ep)/acll.=(-72±12) eV for k parallel [IIi : 
The largest uncertainty in these coefficients is due lo 
the background slope in E2 (the values given earlier ': 
are 8% higher because the background slope used II'. 

-0.3/ eV instead of -0.5/ eV used here) . 

Theory of the Deformation Potentials at L 

The theoretical estimate of the deformation pol' l. 
tials of the FS ~ Ll transitions given earlier12 neglecll ' 
the plane-wave admixture to the wave function of II 

d state LId, i.e., d-sp hybridization. The treatment (11!' 
lined below includes the hybridization. 

We use the model Hamiltonian developed I 
Saffren,32 Ehrenreich and co-workers,33 and :M t1clk r" 

32 M. Saffren, in The Fermi Smjace, edited by W. A. ](arr: 
and M. B. Webb Oohn Wiley & Sons, Inc., New York, 1'1" 
p. 341. . 

n L. Hodges and H. Ehrenreich, Phys. Letters 10, 20J (I Q;'~ . 
L. Hodges, H. Ehrenreich, and N. D. Lang, Phys, Rev. .-
505 (1966). 

#4 F. M. Mueller, Phys. Rev. 153, 659 (1967). 


