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TasirE V. Matrix elements and strain coefficient of matrix elements which were used to calculate the deformation potentials at L,

Orthogonality Tight-binding Zero of d
matrix element integrals Pseudopotential Hybridization bands above I,
o=—0.332 eV
ba=—0.366 7=-40.180 eV V=029 eV Ho=132¢eV E;4=35.75 eV
§=—0.027 eV
Aba/dey,=0.73» Rd(Ine)/dR= —35.5> aVin/dey.= —3.85 eV» d e

ka(Inba)/a(3k)=0.332 Ro(lnw)/dR=—6.9

RA(Ind)/oR=—8.0

aV1/de=—0.93 eVe

s The strain tensor for trigonal distortion is given in Table I.
d See Text and Figs. 13 and 14. ¢ See Table VII

longer distinguish between the energy shift of the 2.1-eV
edge and the change of the Ep— Lg* separation. The nu-
merical value is d(Ep— L3¥)/de= — (1.14:0.1) eV, where
e=AV/V denotes the relative change of the volume.

The X;— X/ transition contributes only a small
fraction of the total e at 3.9 eV. It is impossible to get
reliable values of de;/d(fiw) appropriate to this fraction
of e2. We do not attempt to calculate the shear-strain
deformation potential of this transition; instead, we
simply show that it will produce a negative 17— 12
below the energy of the critical point. The level X4
has free-electron character; it does not interact with
the d bands because of symmetry (Fig. 9). Its eigen-
value is %2 (k=X in atomic units), neglecting a small
pseudopotential form factor. The shear coeflicient for
k perpendicular to z (stress axis, see Table I) is d(Ink?)/
de..=+1. The shear coefficient of the X5 level, which
has tight binding character, will be small compared to
that of k2. Thus the sign of the change in X/— X5 is
‘given by the change of k2% For light polarized parallel
to z only those transitions of X;— X, with k per-
pendicular to z contribute according to the selection
rules (these are strictly valid only for the X point and
zero spin-orbit splitting, but they will hold approxi-
mately). Thus, the 3, c.p. shifts to higher energies for
positive e, producing negative values for IWn—1Wi
below 4.0 eV, as observed.

The FS— L, transition has been found to be re-
sponsible for the large values of W4 and Wn+2Wi,
at 4.3 eV and for the edge in e at this energy. Because
.of the strong localization of this transition the deforma-
tion potentials derived from I¥;; will be close to those
of the transition with k= L. Transitions connected with
M, and M, singularities in J which are not modified
by the Fermi energy will behave differently, because
they are only moderately localized, as discussed in the
Introduction. The deformation potentials of transi-
tions with different k will generally be different. Indeed,
Brust and Liu®! have shown recently that the deforma-
tion potential of the transition with k of the saddlepoint
and the energy shift per strain of the corresponding
structure in the optical spectrum can differ significantly.

The background slope of €; at 4.3 eV due to transi-
tions other than FS— L; cannot be determined

31D, Brust and L. Liu, Phys. Rev. 154, 647 (1967).

b R is the nearest-neighbor distance.

¢ ¢ =AV/V is the relative change of the volun;»

rigorously. We use the slope of e at 4.05 eV, which i.
—0.5/eV (Fig. 12). The similarity of Wy+2Wy, and
1V 4s around 4.3 eV shows that changes of M and J whic},
can be large for shear strain only do not contributc
significantly to W . Furthermore, I1;; has its maximur:
where the slope of e, is largest and where the contriby
tion of this transition to the total e is still small. I}
present, changes of J and M would have the largest
effect on IV 44 at the maximum contribution of Ly’ — /.,
to €. Thus neglecting changes of M and J is justificd
here. This also justifies the analysis of the previous
sections, where we considered the effect of shear strain
on the k degeneracy only.

Without spin, the L,'— L; selection rules arc
M,5#0, M.=M,=0, where k=L is parallel t
2’ (z'=stress axis, Table I). With spin, these rules wil!
still be approximately valid (|3/,|2<|Mz|?). The
selection rules for kL will be different from the oncs
given above, even without spin. The strong localization
of the transitions in k space assures that this deviation
is small. The shear coefficient of the transition will t«
calculated neglecting the deviations from the selectio:
rules given above.

The deformation potentials determined from c
periment and evaluated using the assumption di:
cussed above are 9(Ly— Er)/de=(—9.61.5) eV an!
9(Li—Er)/deys=(—T72412) eV for k parallel [11i’
The largest uncertainty in these coefficients is due t°
the background slope in e (the values given earlicr”
are 8%, higher because the background slope used :
—0.3/eV instead of —0.5/eV used here).

Theory of the Deformation Potentials at L

The theoretical estimate of the deformation pott:
tials of the FS — L, transitions given earlier'? neglect«
the plane-wave admixture to the wave function of !!
d state Ly, i.e., d-sp hybridization. The treatment o'
lined below includes the hybridization.

We use the model Hamiltonian developed !
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